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Abstract-A numerical solution of the boundary layer equations was obtained using a finite difference 
formulation for natural convection in an array of vertical overlapping discrete plate segments. The results 
obtained are presented along with a comparison with the results for a continuous plate array. It was found 
that the overlapping arrays can enhance the heat transfer rate by as much as SO-90% for fixed values 
of the wall-to-ambient temperature difference and heat transfer area. The attainment of heat transfer 
enhancement by the use of discrete plates is possible only in certain ranges of the modified Rayleigh 

INTRODUCTION 

Coormc of electronic components by air, which is 
also the ultimate heat sink, is quite common in the 
electronics industry. Cooling by natural air con- 
vection is most preferable as it is highly reliable and 
avoids additional power consumption for forcing the 
air for cooling. 

The developments in the electronic industry with 
increasingly higher integration of circuits lead to 
smaller semi-conducting devices with higher volu- 
metric heat flux. Figure 1 shows the relationship 

between driving temperature difference and surface 
heat flux. Augmentation in natural convection is 
necessary to enhance the surface heat flux removal for 
a given driving temperature. 

Aung et al. [ 1, 21 studied laminar free convection in 
an asymmetrically heated vertical parallel plate array 
and obtained the results for both uniform wall tem- 
perature and wall heat flux conditions. Carpenter et 
al. [3] investigated the combined radiation and free 
convection in a developing laminar flow between two 
parallel plates with asymmetric heating. The only 
prior analytical work on discrete plate segment array 
in natural convection is by Sparrow and Prakash [4, 
51. They considered an array of discrete plates in stag- 

gered and in-line arrangements, and a parallel plate 
array. They compared the heat transfer results for 
the three arrangements and identified the regime of 
enhancement. 

The enhancement technique investigated in the pre- 
sent work involves the use of an array of staggered 
overlapping plates replacing an array of parallel 
plates. The objective is to obtain basic heat transfer 
data and to identify the regime of enhancement rela- 
tive to the parallel plate array. 

tCurrent address : Department of Mechanical Engineering, 
University of Delaware, Newark, DE 19716, U.S.A. 

Numerical solutions of the coupled conservation 
equations for mass, momentum and energy are 

obtained for both arrangements for a fixed over- 
lapping length. The Prandtl number is taken as 0.7 
for air. The parameters are the modified Rayleigh 
number based on channel width and the number of 
plates in a channel, N. 

The solution of the discrete plate array depends on 

both the parameters while the solution of the parallel 
plate array depends only on the modified Rayleigh 
number. 

FORMULATION OF THE PROBLEM 

Consider two parallel vertical plates separated by a 
distance 2S, each of height H, and maintained at 
temperature T, as shown in Fig. 2(a). Each of the 
parallel plates can be assumed to be made up of N 
plate segments of equal length L, so that the height of 
the plate H = NL. 

When alternate plate segments are displaced hori- 
zontally by a distance S from the plane of each plate 
as shown in Fig. 2(b), a staggered arrangement results. 
Further, when the displaced plates are moved down- 

ward for a fixed overlap, it would result in a staggered 
overlapping arrangement as in Fig. 2(c). When such 
transformation is done in an array of vertical con- 
tinuous parallel plates with interplate spacing of 2S, it 
would result in a staggered overlapping plate segment 
array with interplate spacing of S. Figure 2(d) shows 
a staggered overlapping array. 

The overlapping discrete plate array is considered 
to be very large in the z direction. Hence the fluid flow 
and heat transfer are two-dimensional. The velocity 
and temperature vary along the x and y coordinates 
only. Each channel, as in Fig. 2(d), is defined by two 
adjacent columns of plates and is a representative of 
the entire array. The lateral extremities are covered 
by vertical walls. These walls avoid any pressure com- 
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NOMENCLATURE 

Dh hydraulic diameter AT temperature difference, T, - T, 
Gr Grashof number, g/?( T, - T,,)D,?/v’ u dimensionless velocity, (uD,/v)Gr 

.4 acceleration due to gravity V dimensionless velocity, CD& 
H height of array (Fig. 2) u, u velocity components 
ri dimensionless height, (H/D,)/Gr x dimensionless coordinate, (x/D,,)/Gr 
k thermal conductivity Y dimensionless coordinate, Y/Dh 
L plate segment length (Fig. 2) X, y coordinates (Fig. 2). 

i dimensionless plate length, (L/D,)/Gr 
N number of plates in a channel Greek symbols 
P dimensionless difference pressure, B thermal expansion coefficient 

P(D,f/Pv*Gr’) 0 dimensionless temperature, 

P pressure within array at x (T- T, )/(7-,-T,,) 

p, pressure in ambient at x Y kinematic viscosity 

P’ difference pressure, p--p_ P density. 

Q non-dimensional heat loss per unit 

breadth in a channel Subscripts 
Ra Rayleigh number, Gr x Pr d discrete plate segment channel 

S transverse interplate spacing (Fig. 2) P parallel plate channel 

T temperature rJ; ambient external to the array 

munication with the ambient, and it is assumed that 
bounding walls do not cause any thermal or hydro- 
dynamic perturbation. 

For the analysis, a subset of staggered overlapping 
array as shown in Fig. 2(e) is considered. The wall is 
considered to be isothermal at temperature T,, which 

is higher then ambient temperature T, The pressure 
at the inlet of the channel is pi, and the pressure in 
the ambient in the same plane is pO. The dynamic 
pressure at the inlet due to the flow is pO -pi, but this 
difference is very small as the velocities or flow are 
small. Thus, the pressure at the inlet of the channel is 

over-specified asp0 at the inlet instead of p:. Hence 

P =JJo-P9X. 

In the ambient, 

Px(x) = PoPr9X 

and inside the channel, 

P(x) = PO--PrSX. 

(1) 

(2) 

(3) 

1 o-2 1 o-1 100 10' 
Wall Heat Flux, W/Cm* 

FIG. 1, Comparison of driving temperature in 
of cooling. 

various modes 

The density pz decreases with the height due to 

heating, hence p(x) is less than the ambient pressure 
p,(X). The difference in pressurep’(X) is negative, i.e. 
the pressure inside the channel is less than the ambient. 
and this causes the flow of air through the channel. 
The equilibrium of flow rate through the system 

results from a balance between pressure drop and 
buoyancy. For given height, H, and heat transfer 
surface, the hydraulic diameter Dh for parallel plate 
and discrete plate segment array is evaluated accord- 

ing to ref. [8], namely D, = 4s. 

,25, 
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FIG. 2. The physical model 
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The density-temperature relation (pm-p) = Bp x 

(T- T,), equations (2) and (3) and the difference pres- 
sure are used to rewrite the buoyancy term in the 
momentum equation as 

I 

-&s= -$+dPm--P) (4) 

w = - x +dm- z-co). 

The difference in pressure is very close to zero at 
the exit plane, owing to the external imposed pressure. 
However, for convenience, the p’(x) at exit is under- 
specified as zero. The unknown variables u, u, p and 
T and the coordinates x and y are transformed suit- 
ably to dimensionless variables U, V, P, 0, X and Y. 
The governing equations become 

ae ae a28 
ua,+vay=p (8) 

The boundary conditions are U = V = 0 and 0 = 1 
on the solid surface, and aV/aY = atl/aY= V = 0 on 
the symmetry lines. The additional conditions are 

P’=O at X=0 

P’=O at X=A. 

For a given Z?, it is difficult to find the corresponding 
inlet velocity U,. However, if U, is assumed, then it is 
easy to find the corresponding A using the infor- 
mation about the pressure. In the finite difference 
method used to obtain the solution, a variable grid 
generated by a cosine function is used along the inter- 
plate spacing to minimize the computational time and 
loss of accuracy. For n grid points excluding the 
boundary to determine U, V and 0 at all grid points 
and the pressure at that level 3n+ 1 equations are 
needed. Since the governing equations yield only 3n 
equations, an extra equation is required to obtain a 
unique solution. This is obtained from the condition 
that the steady state mass throughout is constant 
along the height, 

s 

Dh 
M= Udy. (9) 

0 

The overall heat transfer in a channel over a height X 
is obtained as 

Q(X) = 
s 

Dh Uedy. (10) 
II 

SOLUTION PROCEDURE 

The energy, x-momentum and steady state equa- 
tions are solved for U, 0 and P’. Then the continuity 
equation is used to obtain the value of V. The march- 
ing procedure is started at X = 0, where p‘ = 0. As 
one proceeds upwards, P’ becomes negative, and after 
attaining a minimum value, increases to a positive 
pressure. The calculation is stopped as soon as the 
pressure becomes non-negative, hence, closely satisfy- 
ing the condition P’ = U at X = 0 and at X = k. The 
overall heat transfer is calculated up to that level. 
The number of grid points taken along the interplate 
spacing is 49, and about 200-3500 steps along the 
height are required. 

PARALLEL PLATE ARRAY 

The geometry for a parallel plate array is shown in 
Fig. 2(a). The solution for the parallel plate array is 
obtained in the same way using the same formulation 
with the corresponding boundary conditions, 
U = V = 0 and 0 = 1 on the solid surface. It should 
be noted that the value of D, remains the same for 
both configurations. The discrete plate array is a 
transformation from a single plate. The value of Q 
obtained using equation (10) for the parallel plate 
array is divided by 2, to obtain the value of Q based 
on same area as the discrete plate array. 

RESULTS AND DISCUSSION 

The heat transfer data are obtained for discrete 
plate and parallel plate arrangements. Since 

H HPr g=-=__ 
D,Gr D,Ra’ 

also fi = N I$ and 

(D,/H)Ra = PrjNi. (11) 

For a fixed value of N and for various plate lengths 
L (D,/H)Ra values are calculated. This can be 
repeated for various N values. 

The heat transfer data obtained from the computer 
solution using equation (lo), as discussed in the pre- 
ceding section, are represented in Fig. 3. The values 

- - O,-acm,e plate (k,.OE-7) 
-.-.- Cdscmle plate (iz7.OE-7) 
----- climtepiste(i=4.oE-7) 

lOXJO 1OOOW 
(Oh/H) Ra 

FIG. 3. Overall heat transfer results for discrete plate and 
parallel plate array. 
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FIG. 4. Comparison of heat transfer performance of discrete 
plate and parallel plate arrays. 

of Qd and Qr can be obtained for height fi, read 

from this graph. The ratio QJQ, is then plotted as a 
function of (D,/H)Ra with the number of plates in the 

channel N as a parameter (Fig. 4). 
As seen in the Fig. 4, there is substantial enhance- 

ment for a large range of the abscissa variable; the 

enhancement is greater with larger number of plates 

and higher values of (D,/H)Ra. An increase in 
(D,/H)Ra with fixed Dh means a smaller value of 
H. Hence enhancement is greater when H is small. 

Further, above (D,/H)Ra of about 2300, the enhance- 
ment is greater with a larger number of plates (i.e. 

higher N value at fixed (D,/H)Ra) and with larger 

transverse spacing (i.e. larger (D,/H)Ru at fixed H). 
The inefficiency of the discrete plate segment array 

at larger heights could be attributed to the reduced 
mass flow rate. As seen in Fig. 5, U,,, which is the 

indication of mass flow rate, is lower for discrete plate 
array then for parallel plate array at larger height. 
This is due to the additional pressure drop incurred 

in restarting of the boundary layer over each plate 

segment. 
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FIG. 5. Comparison of inlet velocity results for discrete plate 
and parallel plate arrays. 
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FIG. 6. Comparison of array height for discrete and parallel 
plate arrays at fixed Q. 

Array height comparisons 
The array height for fixed heat dissipation, Q, of 

the discrete plate segment array is compared with 
that of the parallel plate array. The graph (Fig. 6) is 

obtained for various N values. To this end, (D,/H)Ra 
is obtained for several values of the plate length i 
using equation (9). From Fig. 3 the Qd is obtained for 

each corresponding value of (D,/H)Ru. Further, for 

the same heat loss Qd, (D,/H)Ra for a parallel plate 
array is also obtained. A typical example of the pro- 

cedure is shown in Fig. 3 (ABCD). 
The ratio H,/H, is plotted against Q. In Fig. 6, it 

can be seen that for smaller values of Q, H,/H, is less 
then one and remains constant and thus at larger 

heat loss range, the overlapping discrete plate segment 

array becomes ineffective. 

Pressure distribution along height 
The distribution of dimensionless difference, pres- 

sure P’, is shown in Fig. 7, the ordinate being the ratio 

of the local value of p’ to the minimum value of p’ for 
the case under consideration. A typical case con- 
sidered for plotting is with a minimum value of 

1.20 

- Parallel Plate cha!l”Sl 

- - Discrete plate (k.OE-7) 

0.20 -- 

0 0.20 0.40 0.60 0.80 1.00 1 
X/H 

‘0 

FIG. 7. Axial distribution of inner ambient pressure difference 
along height H. 
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